Recent progress on the discriminative region-dependent transform for speech feature extraction
نویسندگان
چکیده
The region-dependent transform (RDT) is a feature extraction method for speech recognition that employs the Minimum Phoneme Error (MPE) criterion to optimize a set of feature transforms, each concentrating on a region of the acoustic space. Previous results have shown that RDT gives significant recognitionerror reduction in a large vocabulary speaker-independent (SI) system. As a follow-up investigation, this paper presents the recent progress of applying RDT in speaker-adaptive training (SAT). Similar to previous SI results, the integration of RDT with SAT yields 7% relative improvement in word error rate (WER). Also, theoretical comparisons are made between RDT and other discriminative feature extraction methods, including the improved version of the feature-space MPE (fMPE) that uses the “mean-offsets” as additional input features.
منابع مشابه
Jointly optimized discriminative features for speech recognition
In the past decade, methods to extract long-term acoustic features for speech recognition using Multi-Layer Perceptrons have been proposed. These features have been proved to be good complementary features in some feature augmentations and/or through system combination. Usually, conventional linear dimension reduction algorithms, e.g. Linear Discriminative Analysis, are not applied on the combi...
متن کاملHMM-based speech recognition using state-dependent, discriminatively derived transforms on mel-warped DFT features
In the study reported in this paper, we investigate interactions of front-end feature extraction and back-end classification techniques in hidden Markov model-based (HMMbased) speech recognition. The proposed model focuses on dimensionality reduction of the mel-warped discrete fourier transform (DFT) feature space subject to maximal preservation of speech classification information, and aims at...
متن کاملContourlet-Based Edge Extraction for Image Registration
Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. In general, the majority of registration methods consist of the following four steps: feature extraction, feature matching, transform modeling, and finally image resampling. As the accuracy of a registration process is highly dependent to the fe...
متن کاملImprovements to generalized discriminative feature transformation for speech recognition
Generalized Discriminative Feature Transformation (GDFT) is a feature space discriminative training algorithm for automatic speech recognition (ASR). GDFT uses Lagrange relaxation to transform the constrained maximum likelihood linear regression (CMLLR) algorithm for feature space discriminative training. This paper presents recent improvements on GDFT, which are achieved by regularization to t...
متن کاملGeneralized discriminative feature transformation for speech recognition
We propose a new algorithm called Generalized Discriminative Feature Transformation (GDFT) for acoustic models in speech recognition. GDFT is based on Lagrange relaxation on a transformed optimization problem. We show that the existing discriminative feature transformation methods like feature space MMI/MPE (fMMI/MPE), region dependent linear transformation (RDLT), and a non-discriminative feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006